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ABSTRACT 

A theory is presented for the approximate computation of eigen-

frequencies of liquid oscillations in non-cylindrical cavities. The 

eigen-frequencies are essential for the prediction of stability of 

liquid-filled shell. The theory reduces the problem of finding the 

eigen-value to a simple integration which can be performed by hand 

computation when the shape of the cavity is known. Comparison of 

theoretical prediction and available experimental data shows very 

good agreement . . 
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I. INTRODUCTION 

The dynamic behavior of liquid-fillec, s~inning shell can be reliably 

predicted if the cavity occupied by the liquid is cylindrical or if the 

cavity is spheroidal and completely filled with liquid. The latter case, 

a spheroidal cavity completely filled. with liquid, is of relatively little 

practical interest for the shell designer. In fact most eavities are 

nearly cylindrical and, furthermore, cavities are usually not 100 percent 

filled. It is, therefore, very fortlinate that the case of a partially 

filled cylindrical cavity is accessible to theoretical analysis. 

1* 
~e theory for this case was published by Stewartson in 1959 

and has since become the most important tool for the design of stable 

shell. Although most practical cavities are approximately cylindrical, 

some deviate sufficiently from exact cylindrical shapes that there is 

some doubt whether treating them as cylinders is still a good approxi-

mat ion. 2 To clarify this point, Karpov has made extensive experi-

mental investigations of non-cylindrical cavities. (All cavities 

considered are bodies of revolution.) It was found that rounded corners 

produce very little effect on the range of instability but that 

considerable changes result from modi!ications like conical reduction of 

one or both ends of the cavity. In view of the large variety of cavity 

shapes, it is not possible to explore the effect of cavity shape solely 

on an experimental basis. 

Superscript nwnbers &note references 'Which may be found on page 20. 
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On the other hand, an exact theoretical approach to the probl~m 

appears to be quite hopeless for the following reason:' The· equations 

of the fluid motion are to be solved for boundary conditions that· are 

imposed by the shape of the cavity walls. If the cavity is cylindrical, 

and only in this case, the solution is separable in radial and axial com-

ponents. The tremendous simplification gained by the separation of 

variables is lost if the cavity shape deviates, however slightly, from a 

perfect cylinder. Solutions could be found, possibly, by numericaL 

methods; however, such an approach is quite impractical considering that 

the computation cannot be performed prior to the cavity design. Th~ best 

to be done within the borders of an exact theory is to comp~te the de-

sired data, e.g., eigen-frequencies -for a comprehensive class of 

cavity shapes. The shell designer would then approximate the actual 

cavity by one· for which data·had been computed and tabulated. However, 

the advantage of an exact solution is lost when ·the cavity is only 

approximate, and one might .ask whether an. approximate solution for the 

exact cavity is not pref~rable. 

II.· THEORY OF ~ROXIMATE EIGEN-FREQUENCIES 

Of particular importance for the stability of the shell are the 

eigen-frequencies or frequencies of free oscilla~ion of the liquid. 
. .. t· 

According to Stewa~tson , instability occurs whenever any of the 

eigen-frequencies falls within a certain bandwidth about the frequency 

of nutation of the shell. Details on this stability th~ory are found in 

Stewartson's paper. 1 ·whether a shell· is stable can be predicted 

.8 



when the eigen-frequencies and the residues of the forcing term, which 

determine the bandwidth, are known. For cylindrical cavities, the eigcn-

frequencies and residues are computed exactly and given in Stewartson's 

tables. l,.? For small deviations from cylindrical shape, small changes 

of the eigen-frequencies and the residues must be expected. While accurate 

values for the eigen-frequencies are essential for the prediction of the 

dynamic behavior, the exact values for the residues are less important, 

since these determine only the bandwidth and usually the latter is 

affected by other factors, such as viscosity, more than by deviations 

2 
from ::ylindrical shapes. From Karpov' s experimental data of un-

damping rates, it appears that it is sufficient and safe to assume a 

value for the residue equal to that of an "equivalent" cylinder, i.e., 

one ~ith the same volume and height. Thus, we are left with the determi-

nation of the eigen-frequencies for non-cylindrical cavities. The 

following .analysis rests on the assun;rption that the radius of the 

cavity, a, is a slowly varying function of the distance along the axis, 

z, i.e., 

(1) 

From Stewartson's analysis it follows that the oscillatory part of the 

pressure - ~hich results from the liquid oscillations - is of the form: 

P( ) i(wt-e) 
p = r,z e (2) 

where P(r,z) satisfies the differential equation: 
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(3) 

with aa 4 ::: . ..,..,( l,....-_-T-.)-=-2 - 1 (4) 

w is the eigen-frequency, (r, 9,· z) e.re :pola.r coordinates and 'T' is 

UJ 
the dimensionless eigen-frequency, T = 0 , where 0 is the frequency of 

spin. 

Let us use the notation (u, v, w) for the components of the oscillatory 

velocity in the polar· coordinate system (r, A, z). Then (u, v, w) can be 

expressed by certain 

derivatives ~ and 

linear combinations of the pressure and its partial 

~ az . 
We assume that th~ cavity shape is g~ven by: 

a ::: a(z) , 0 s z ~ 2c (5) 

and that Equation (1) holds for 0 s z < 2c • If the cavity is partially 

filled with liquid it is assumed, as in Stewartson's case, that the· 

undisturbed free surface is a cylinde~ of radius b . For the following 

analysis we must assume that 

.b < a(z) for 0 s; z s 2c (6) 

·Equation (3) must be solved in connection with certain boundary conditions, 

e .o.g.' 

da 
u =- w 

dz 
at r ::: a(z) (7) 
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w = 0 at z = 0, 2c . (8) 

and one boundary condition at r = b, which requires that the pressurebe 

zero on the free surface wl1en the cavity is partially filled. For a 

better understanding, a brief review of the eigen-value problem for 

Stewartson' s case is given in the following: For the cylindrical cavity, 

i.e., if~:~ 0, the solution of (3) with appropriate boundary con­

ditions can be found by separation of variables: 

p = c ( O'k.r ) • cos kz (9) 

where C = A·J1 (akr) + B·Yl(akr) and J 1 , Y1 are Bessel functions of the 

first and second kind with the argument akr • The solution (9) must 

satisfy certain boundary conditions at r = b and r = a , Without 

giving a detailed derivation (which can be found in.Reference 1) it suffices 

here to state the following results: For given b~/a2 and T the boundary 

conditions at r = b and r = a lead to a transcendental equation for ka 

with discrete roots: 

ka = Tln (b~ j a a , ,. ) , n = l, 2, 3, .... (10) 

where n is related to the number of radial waves of the solution (9}. 

The boundary conditions at z = 0 , 2c lead to a similar equation 

for kc with roots: 

TT 
kc = 2 [2j+l] j = 0, 1, 2 .•• (ll} 

ll 



Since 

f .. 

w is proportional to · ~ , Equation (8) ean be written: az 

at z = 0, 2c 

Equations (12) and (9) yield: 

sin.k 2c = 0, 
TT 

kc = 2 . m 

(12) 

(13) 

Because of certain symmetry requirements, the number of half-waves in the 

z-directiol? mus·t be odd, i.e.,· rn =· (2j+l) and Equation (ll) follows from (13). 

Compar~son of (11) and (10) gives a condition for the fineness ratio: 

C _ TT/2 
a [ 2j +l ] - -::::1.\~(~bao:-;r-aaor,-.,.'T) 

Equation (14) expresses that only certain discrete fineness ratios 
c 
a 

(14) 

exist for given· b2 /a2 and r or, for given b2 /a2 and c/a there exists 

a set of discrete eigen~functions .,.jn according to the choice of j and n 

in Equation (14). 
l 

In Stewartson' s tables. the various c 
a(2j+l) are 

tabulated as functions of ba/a2 and T • Let us call these functions 

8n (b2 /a2 , T) , i.e. , 

(15) 



Returning to the eigen·-value problem for the non-cylindrical cavity, we 

notice that the only difference is in the boundary condition (7). This 

condition states that the velocity component normal to the wall r = a 

is zero. If now the inclination of the wall toward the axis is small, i.e., 

1~1 ~ 1 , an obvious approximation of Equation (7) is: dz . 

u = 0 at r = a(z) (16) 

The form of the approximate boundary condition (16) suggests searching for 

approximate solutions of Equation (3) which are of the same general form as 

Equation (9) except that the radial wave number, k, should be a slowly 

varying function of z according to the fact that the radius, a, changes 

slowly with z. Thus, we try as an approximate solution of (3): 

P = C(~kr) . cos ~(z) (17) 

where C is a cylinder function of the argument akr and k depends 

weakly on z The phase ~(z) can no longer be assumed to be equal to 
z 

kz but rather 4i = J kd~ 
0 

It can be verified easily that (17) approximately satisfies the 

differential Equatio~ (3) provided that: 

k(z) 

and 

d~ 

dz 
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. Since the boun4ary condition at r = b and the approximate boundary 

condition at r ~a (Equation (16)) are - locally- the same as for the 

cylindrical cavity, we arrive naturally at the same condition for ka , 

viz., according to Equation (10), 

(20 )· 

Equation (20) gives the z- dependent wave number k(z) and, at the same 

time, shows that the ·condition . (19) is a consequence of 1~:1 <t 1 (since 1ln 

and its derivative with respect to b2 /a2 are of order unity). 

Thus, we conclude that (17) with (18) approximately satisfie~ the 

differential Equation '(3) and the boundary conditions at r = b and r = a. . -
Finally, the boun~ary conditio~ ( 12): ~ = 0 

requires that sin ~ = 0 at z = 0, 2c or: 

~(o) = 0 

2c 

~(2c) = I k(z) dz := n[2j+l] 
•.' 
0 

at z = 0, 2c 

Equation (22) can be considered as a generalization of Equation (11 )-. 

Substituting (20) into (22) gives: 

2c 

n[2j+1] = J ~ 'fln(b2/a:a, T) dz 

0 

(21) 

(22) 

(23) 

Equation (23.) connects b and T, i.e., if the radius of the cylindrical 

void, b, is given, (23) determines T and vice versa • 
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According to Equation (15) the function Tin is related to Sn , a function 

which is tabulated in Stewartson's tables. Thus, it is convenient to 

rewrite (23) by substituting ~ according t~ Equation (15) into (23) and, 

after dividing by n(2j+l), one obtains: 

2c 
1 J c a l = 2c ~Sn~~~~~ dz (24) 

0 

Equation (24) is easy to memorize: Sn (b2 /a2 , T) is just the c/a(2j+l)-value 

Of a cylinder With eigen-frequency T and fill-ratio b2 /a2 • Thus, the 

integrand of (24) is the ratio of the local c/a(2j+l) - value and the 

c/a(2j+l)- value which would correspond to T and the local b2 /a2 -value. 

Equation (24) then states that the mean value of this ratio - averaged 

over the length of the cavity- should be equal to one. 

Usually, the higher radial modes are unimportant, so that (24) must 

be solved only for n = 1 . We will therefore wr:i.te just S instead of 

~ , having in mind that (24) is valid for any of the Sn values. 

The evaluation of Equation (24) is difficult when S is given 

numerically (as in Stewartson's tables), since one has to assume both, 

b and T, in order to perform the integration numerically and eventually 

repeat the procedure with changed values of T (or b) until the correct 

value of T (or b) can be observed by interpolation. For a 100 percent 

filled cavity, i.e., b = 0, the integration simplifies considerably, 

since S becomes independent of z and can be taken out of the integral. 

One obtains from (24): 

15 



s(o, T) 
2c 

= ~c J a·hj+l) dz 
0 

(25) 

Since S c 
is the a( 2j+l) -Value Of a cylinder with eigen-frequency T, 

Equation (25) can be interpreted in the following way: A·completely filled 

non-cylindrical cavity has the same eigen-frequencies Tn 3 as an "equivalent 

cylindrical cavity", which is defined by having a fineness ratio, c/a equal to 

the averaged c/a of the non-cylindrical cavity. For a 100 percent filled 

cavity, therefore, only one integration must be performed to determine the 

average c/a. 

One way of solving the eigen-value problem given in Eqpatioh (24) is 

to approximate 1/S by a power -series- in b2 /a2 · • If T is given and b 

is to be determined one coul_d plot 1/S , for the particular T given, . 

versus b2 /a2 and approximate the obtained curve by a polynomial in b2 /a2 , 

If neither T nor b2 /a2 are too large, the following formula is convenient 

and quite accurate: 

s is the value s(o, T) as obtained from Stewartson's tables for 
0 

(26) 

b2 /a2 = o. The approximation (26) is valid within the following limits: 

0 ::; T :!;' 0.12 

0 ::; b2 /a2 S' 0.15 
'(27) 

with (26) substituted into (24) one obtains: 

16 



2c 

S0 (,-) = ~c J a(~j+l) [1 + 1.26(~/J dz (28) 

0 

Equation (28") has the advantage that the right side is independent of T 

and the left side independent of b, i.e., by integration of (28) one finds 

a relation of the form: 

(29) 

A better approximation than (28) may be obtained by choosing a coefficient 

different from 1. 26 in Equation (26) adapted to the particular T, if T is 

known. One could also include higher powers of baja2 • 

17 



III. COMPARISON WITH EXPERIMENTS 

. In order. to test t.he theory given in the preoeeding section some of 

the experimental findings of KarpoJ 2 have been· compared with theoretical 

predictions, The cavities investigated by Karpov were co~posed of a 

cylindrical and a conical section. A schematic of a cavity shape is shqwn in 

the followi~g figure. In the diagram, t~e filling ratio which corresponds 

to a fixed eigen-frequency T0 is plotted versus the variable cone-angle A. 

Three curves are shown that porrespond to three different ratios.of conical 

section h to ove.rall length 2c , . For e = 0 all cavities degenerate into 

a cylinder of fineness ratio -~ ~ 2.687 and the filling ratio (1- b2 /a2 ) a . 

attA.tns Stewartson's value. (It is j = 1, n::;; 1). The $Olid .curves in the 

_f:i..gtire show the theoretically predicted value·s, the symbols the e'JCl)erimental 

data. 'Ihe theory obviously gives good predictions eve!?- for e -values for 

. ,_h, 
which the supposition on which the theory rests, viz. dz =~ 1, is 

hardly fulfilled. The reason for this is, roughly, that the neglected terms 

in the boundary·conditions ·a~d in the diffe~ential equation are orthogona~ 

or nearly so; to the other t~rms. There.fore, al tho\lgh the "local error" is 

of order 1~:1 , the "av:eraged error'' over the length of the cavity can be 

very sma:ll. The theoret~cal curves in the figure were ob~ained by solving 

Equation (25) for fixed T = 0.055. To perform the in~egration, the 

following approximation was used:-

l (:!;..a:a. )a 0.944 + 1.074 -"' - = s 

The integration cou.;Ld then be performed analytically: .and b:/a;a is 

found as a function of e and ..!!.. . 2c 
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